GCSE Maths Knowledge Organisers for Higher Tier

- 1. Geometry
- 2. Circles and Pythagoras
- 3. Number and Algebra
- 4. Data, ratio and proportion

GCSE MATHS NEED TO KNOW - HIGHER

GEOMETRY

Anį	gle facts - lines		Angl	e facts – triangles and quadrilaterals	i	
1	Vertically opposite angles	are equal	7	Angles in a triangle		add up to 180
2	Angles on a straight line	add up to 180	8	Base angles of an isosceles triangle	2	are equal
3	Angles at a point	add up to 360 x^*	9	Angles in an equilateral triangle		are equal (all 60)
4	Alternate angles	are equal	10	Angles in a quadrilateral		add up to 360
5	Corresponding angles	are equal	Angl	e facts - polygons	add un to	360°
6	Co-interior angles	add up to 180	12	The interior and exterior angle of any polygon	add up to :	180°
Cor 15	ngruence and similarity The four tests for	SSS	13	The sum of the interior angles of a polygon can be found by using the formula	(number o	f sides-2) x 180º
	congruence are	ASA SAS RASH	14	Regular polygons have all sides		
16	Triangles are <u>similar</u> if	All angles are the same (AAA They are an enlargement of each other		the same size		
17	Area scale factor	Length scale factor ²	Vol	lumes		
18	Volume scale factor	Length scale factor ³				
Are	ea Formulas		23	Volume of a cuboid	-	= I x w x h
19	Area of a rectangle	= length x width	24	Volume of a prism	:	= area of cross section x I
20	Area of a parallelogram	=base x perpendicular height	25	Volume of a cylinder		$=\pi r^2 x h$
21	Area of a triangle	$=\frac{1}{2}$ base x perpendicular height				h
22	Area of a trapezium	$= \frac{1}{2} (a + b) \times h$	26	Pyramid		$=\frac{1}{3}$ ×area of base× h
Half t	he sum of the parallel sides, tir	$\underset{\text{nes the distance between them}}{\longleftrightarrow}$	Sur	face area		
That is The ar	how you calculate ea of a trapezium"		27	Surface area of a prism	t	The sum of the area of all the 2D faces
"Fa	ctors come in two by two, hurro	ah, hurrah"	28	Surface area of a cylinder		$2 \times \pi r^2 + \pi d \times h$
"Multiples are in the times tables"						

Circle	s			Pyt	hag	goras and	Trigonom	etry		
30	Circumference		$=\pi x d$	34		Pythagor For a righ	ras' Theor ht angled	em triangle,		$a^2 + b^2 = c^2$
	71100		$=\pi r^2$	35	+	Trigonon	netric rati	05		c is always the hypotenuse!
32	Area of a secto	r	$\frac{\theta}{360} \times \pi r^2$				hyp	1 opp		$sin\theta = \frac{hyp}{hyp}$ $cos\theta = \frac{adj}{hyp}$
33	Arc length		$\frac{\theta}{360} \times \pi d$			adj			$tan\theta = \frac{1}{adj}$ SOHCAHTOA	
Descr	ibing Transformat	tions				Sine rule	2			$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
40	Rotation	DireDegCent	ction (clockwise or anticlockwise) rees tre of rotation	37		Cosine ru	Cosine rule $a^2 = b^2 + c^2 - 2a^2$		$a^2 = b^2 + c^2 - 2bc \ CosA$	
41	Reflection	• Line	of reflection	38	T	Area of a	a triangle			$A = \frac{1}{2}ab\sin C$
42	Translation	• Vect	$\operatorname{cor}\begin{pmatrix}x\\y\end{pmatrix}$	Exa	ct v	/alues				2
43	Enlargement	ScalCent	e factor tre of enlargement	39	Т		300	450	6	o
Circur	I nference is pi time	 	. pi times diameter, pi times diameter				1	-√2		<u></u>
Circur Area i	nference is pi time s pi r squared	es diameter	, pi times diameter, pi times diameter				2	2	2	2
'		elevation di	rawings plan drawing			cos	-√ <u>3</u> 2	$\frac{\sqrt{2}}{2}$	2	2
	side \rightarrow $front$ side top					tan	<u>√3</u> 3	1	√:	3
Circle	theorems									
44	The angle in a circle is 90	a semi-	90° Diameter	48		The angl is twice t the circu	le at the co the angle Imference	entre at		9 20
45	Opposite ang cyclical quad add up to 180	les in a rilateral)	a + c = 180 b + d = 180	49		Two tang same po in length	gents fron int are eq 1	n the ual	(Tangents
46	The angle being tangent and a sis 90	tween a a radius	90° Radius Tangent	50		Alternato Theorem	e Segmen n	t		Chord G Tangent
47	Angles at the circumferenc same segmer equal	e in the nt are	Chord O							

NUMBER

FDP				
51	% increase	Find the % and add it on		
52	% decrease	Find the % and take it away		
53	Compound interest	original x % multiplier number of years		
54	Compound depreciation	original x % multiplier number of years		
55	Convert a fraction to a decimal	Make the denominator 10 or 100 OR divide the numerator by the denominator		
56	Convert a decimal to a %	X 100		
Conversions				
57	1 cm	10mm		
58	1m	100cm		
59	1km	1000m		
60	$cm \rightarrow m$	÷ 100		
61	m → cm	×100		
62	$cm^2 \rightarrow m^2$	÷ 100 ²		
63	$cm^3 \rightarrow m^3$	$\div 100^{3}$		
64	1kg	1000g		
65	11	1000ml		
Standard form				
66	0.0004	4×10^{-4} (the number must be between 1 and 10)		
67	40000	4×10^4 (the number must be between 1 and 10)		

Surds				
68	$\sqrt{a} \times \sqrt{b}$		\sqrt{ab}	
69	$\frac{\sqrt{a}}{\sqrt{b}}$		$\sqrt{\frac{a}{b}}$	
70	$\sqrt{a} \times \sqrt{a}$		а	
71	$(\sqrt{a}+1)(\sqrt{a}-1)$)	a – 1	
Indice	S			
72	$a^b \times a^c$		a^{b+c}	
73	$\frac{a^b}{a^c}$		a^{b-c}	
74	$(a^b)^c$		a^{bc}	
75	a^0		1	
76	a ^{-b}		$\frac{1}{a^b}$	
78	$a^{\frac{b}{c}}$		$\sqrt[c]{a}$ b	
Specia	I Numbers			
79	A factor is A nur witho in pa		mber that divides into another number out a remainder, factors always come irs	
80	A multiple is A nur		mber in a given numbers times table	
81	A square Is a n number 36, 4		umber multiplied by itself: 1, 4, 16, 25, 9, 64, 81, 100, 121, 144, 169, 196, 225	
82	A prime number	Has o 7, 11,	only two factors, one and itself: 2, 3, 5, , 13, 17	

ALGEBRA

Equations						
83	Like terms have what	Same letter, same index				
Inequ	Inequalities					
84	≤	Less than or equal to				
85	<	Less than				
86	2	Greater than or equal to				
87	>	Greater than				

Grap	Graphs				
88	y = mx + c	$m = gradient$ $\frac{Difference in y}{Difference in x} = \frac{y_2 - y_1}{x_2 - x_1}$ $c = y intercept (where the line crosses y axis)$			
89	To find the mid-point	$(\frac{x1+x2}{2},\frac{y1+y2}{2})$			
90	Parallel lines	Have the same gradient			
91	Perpendicular lines	Gradient = $-\frac{1}{gradient}$			
92	Roots or solutions are	The points at which the graph passes through the x-axis			
93	The turning point	The maximum or minimum point of a graph, also referred to as the vertex $\underbrace{\left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $			

Quadra	Quadratic formula and completing the square				
94	<i>x</i> =	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
95	$x^2 + 2a + b$	$(x+a)^2 - a^2 + b$			
96	$(x+a)^2 - b$	Completed square form where the turning point is (-a , +b)			

Compo	ound measures		
97	Speed	$speed = \frac{distance}{time}$	S T
98	Density	$density = \frac{mass}{volume}$	
99	Pressure	$pressure = \frac{force}{area}$	P A

	Functi	nctions of graphs				
	100	f(x+a)	Translate by vector $\binom{-a}{0}$ (Shift in the x-direction by $-a$)			
	101	f(x-a)	Translate by vector $\binom{+a}{0}$ (Shift in the x-direction by + a)			
]	102	f(x) + a	Translate by vector $\begin{pmatrix} 0\\+a \end{pmatrix}$ (Shift in the y-direction by +a)			
	103	f(x) - a	Translate by vector $\begin{pmatrix} 0\\-a \end{pmatrix}$ (Shift in the y-direction by -a)			
	104	-f(x)	Reflection in the x-axis			
	105	f(-x)	Reflection in the y-axis			
	106	əf(x)	Shrink or stretch graph vertically by a factor of a. (Multiply y-coordinates of f(x) by a)			
	107	f(ax)	Shrink or stretch graph horizontally by a factor of a. (Divide x-coordinates f(x) by a)			

DATA, RATIO AND PROPORTION

Correlatio	Correlation					
108	Positive correlation means	As one variable increases the other variable increases, this looks like:				
109	Negative correlation means	As one variable <u>increases</u> the other variable <u>decreases</u> , this looks like:				
110	No correlation means	There is <u>no relationship</u> between the two variables, this looks like: y				
111	Line of best fit	A straight line drawn with a ruler that goes through the data with roughly the same number of points on each side of the line				
112	Interpolation	Estimating a value within a given data set				
113	Extrapolation	Estimating a value outside the give date set by assuming a trend				

Avera	Averages				
114	Mean	Add all the numbers and divide by how many there are			
115	Median	Order the numbers from smallest to biggest and find the middle number			
116	Mode	Most frequent			
117	Range	Difference between the highest and lowest value			
118	Mean from a frequency table	Total Fx Total F			
119	Mean from a grouped frequency table	1. Find the mid point of each group 2. $\frac{Total Fx}{Total F}$			

Proba	Probability				
120	Probabilities of mutually exclusive events	Add up to 1			
121	$P(A \ \overline{\cap} \ B)$	Probability of A AND B			
122	$P(A \ \overline{\cup} B)$	Probability of A OR B			
123	$P(A \mid B)$	Probability of A GIVEN B			
124	P(B A)	Probability of B GIVEN A			
125	P (B')	Probability of NOT B			

Proportion		
126	Direct proportion	$y \alpha x y = kx$
127	Indirect proportion	$y \alpha \frac{1}{x}$ $y = \frac{k}{x}$